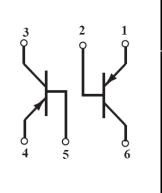
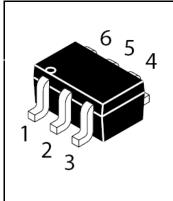


MMDT3906


PNP/PNP Multi-Chip Transistor

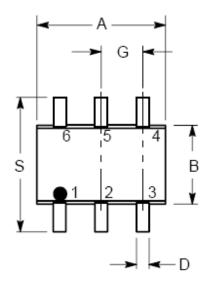

FEATURES

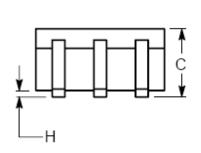
• Ideal for low power amplification and switching

MECHANICAL DATA

- Case: SOT-363 Plastic
- Case material: "Green" molding compound, UL flammability classification 94V-0, (No Br. Sb. Cl)
- Lead Free in RoHS 2002/95/EC Compliant

Maximum Ratings @ $T_A = 25^{\circ}C$

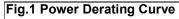

Characteristic	Symbol	Value	Unit
Collector-Base Voltage	V _{CBO}	-40	V
Collector-Emitter Voltage	V_{CEO}	-40	V
Emitter-Base Voltage	V_{EBO}	-5	V
Collector Current -Continuous	I _C	-200	mA
Collector Power Dissipation	Pc	200	mW
Thermal Resistance, Junction to Ambient	$R_{\theta_{JA}}$	625	°C/W
Junction Temperature	T_J	150	$^{\circ}\!\mathbb{C}$
Storage Temperature Range	T _{STG}	-55~+150	$^{\circ}\!\mathbb{C}$


Electrical Characteristics @ T_A = 25 $^{\circ}$ C unless otherwise specified

Characteristic	Test Condition	Symbol	Min.	Тур.	Max.	Unit
Collector-base breakdown voltage	I_{C} =-10 μ A, I_{E} =0	V_{CBO}	-40			V
Collector-emitter breakdown voltage	I _C =-1mA,I _B =0	V_{CEO}	-40			V
Emitter-base breakdown voltage	I_E =-10 μ A, I_C =0	V_{EBO}	-5			V
Collector-base cut-off current	V_{CE} =-30V, $V_{BE(off)}$ =-3V	I _{CEX}			-50	nA
Emitter-base cut-off current	V_{EB} =-5 V , I_{C} =0	I _{EBO}			-50	nA
DC current gain	V _{CE} =-1V,I _C =-0.1mA	h _{FE1}	60			
	V_{CE} =-1 V , I_{C} =-1 mA	h _{FE2}	80			
	V_{CE} =-1 V , I_{C} =-10 mA	h _{FE3}	100		300	
	V_{CE} =-1V, I_{C} =-50mA	h _{FE4}	60			
	V_{CE} =-1V, I_{C} =-100mA	h _{FE5}	30			
Collector-emitter saturation voltage	I _C =-10mA,I _B =-1mA	V _{CE} (sat)1			-0.25	V
	I_C =-50mA, I_B =-5mA	V _{CE} (sat)2			-0.4	V
Base-emitter saturation voltage	I _C =-10mA,I _B =-1mA	V _{BE} (sat)1	-0.65		-0.85	V
	I_C =-50mA, I_B =-5mA	V _{BE} (sat)2			-0.95	V
Transition frequency	V _{CE} =-20V,I _C =-10mA, f=100MHz	f _T	250			MHz
Collector output capacitance	V_{CB} =-5V, I_{E} =0, f =1MHz	Cob			4.5	pF
Noise figure	V_{CE} =-5V, I_{C} =-0.1mA, f =1kHz ,Rg=1K Ω	NF			4	dB
Delay time	V_{CC} =-3V, V_{BE} =-0.5V	T _d			35	nS
Rise time	I_{C} =-10mA , I_{B1} =- I_{B2} =-1mA	T_r			35	nS
Storage time	V_{CC} =-3V, I_{C} =-10mA	T _s			225	nS
Fall time	I _{B1} =-I _{B2} =-1mA	T_f			75	nS

REV. 3, Jan-2013, KSTR03

SOT-363 Outline Dimension



Symbol	Dimension In Millimeters			
Syllibol	Min	Max.		
Α	1.89	2.20		
В	1.15	1.35		
С	0.80	1.10		
D	0.10	0.30		
G	0.65 BSC			
Η		0.10		
J	0.10	0.25		
K	0.10	0.30		
N	0.20 REF			
S	2.00	2.20		

Device Marking:

Device P/N	Marking code
MMDT3906	A2

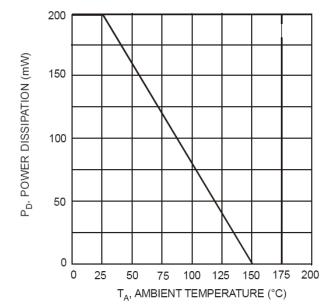


Fig.3 Typical DC Current Gain vs. Collector Current

Fig.5 Base-Emitter Saturation Voltage vs. Collector Current

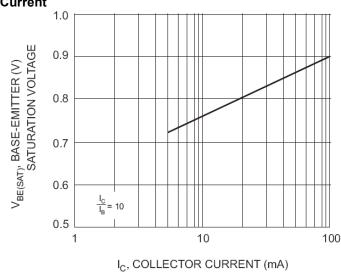


Fig.2 Input and Output Capacitance vs. Collector-Base Voltage

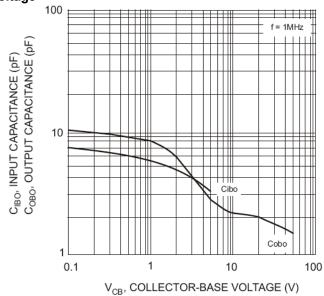
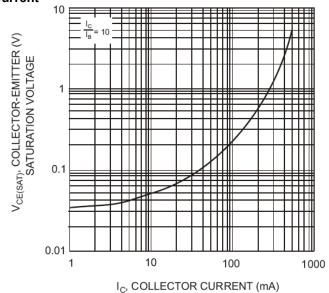



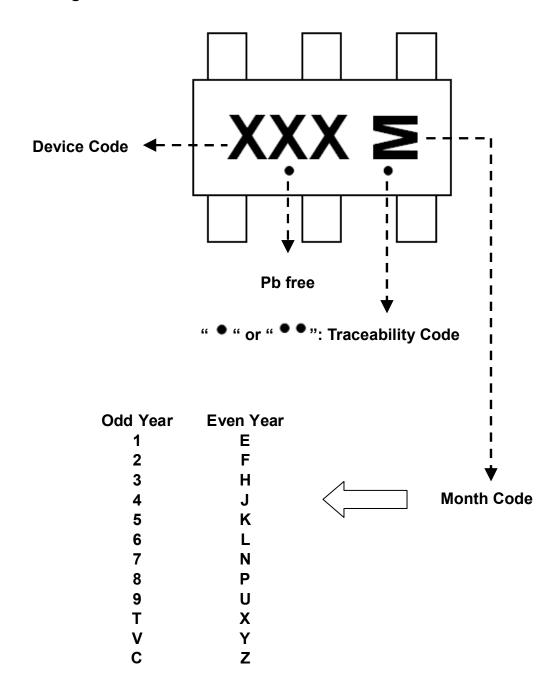
Fig.4 Collector-Emitter Saturation Voltage vs. Collector Current

Important Notice and Disclaimer

LSC reserves the right to make changes to this document and its products and specifications at any time without notice. Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.

LSC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does LSC assume any liability for application assistance or customer product design. LSC does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application.

No license is granted by implication or otherwise under any intellectual property rights of LSC.


LSC products are not authorized for use as critical components in life support devices or systems without express written approval of LSC.

New Marking Rule Notification

Range: In order to have well management in process control, the new marking rule is applied to small signal device including Switching Diode, Transistor and Schottky Diode.

Package: SOT-363

