
BBSMD5050-BB3-60-010

BBSMD5050-BB3-60-010

Broad Band LED

Features

- •Chip size: 1.05×1.05mm
- •Number of Chips: 1pc
- •Excitation Wavelength: 550nm
- •Optical efficiency 500-1000nm(typ.):54mW
- •Optical efficiency 600-1000nm(typ.):35mW
- Viewing half angle: 52°
- Package:Resin
- ·Lens: Phosphor-mixed Silicone Resin

Applications

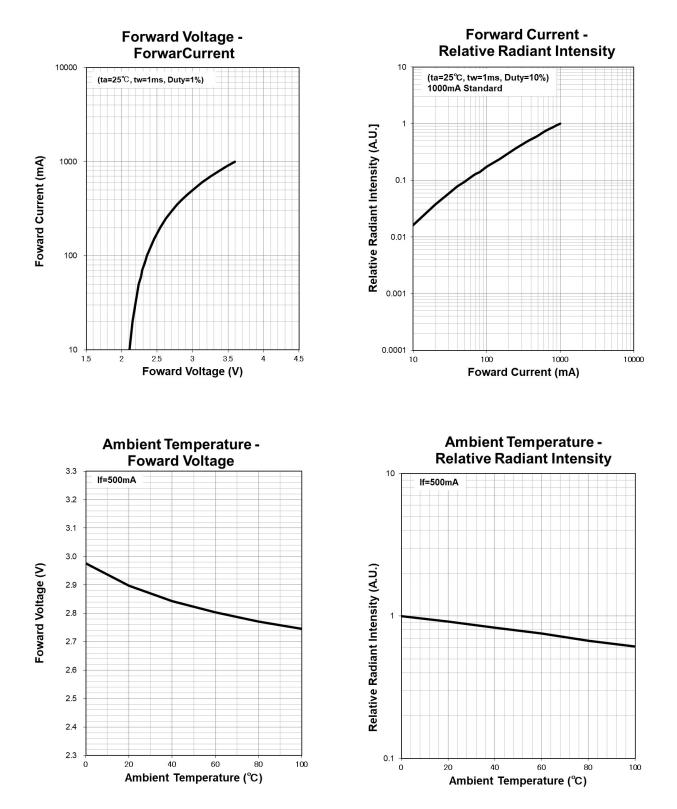
BBSMD5050-BB3-60-010

Maximum Ratings (Tc=25°C)

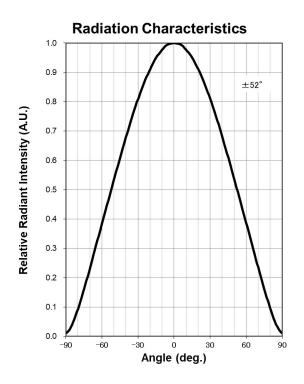
Parameter	Symbol	Values	Unit
Power Dissipation	PD	1700	mW
Forward Current	lf	500	mA
Pulse Forward Current	IFP	1000	mA
Reverse Voltage	V _R	5	V
Junction Temperature	Tj	115	°C
Operating Temperature	T _{opr}	-40~85	°C
Storage Temperature	Tstg	-20~65	°C
Thermal Resistance	Rthjs	15	°C/W

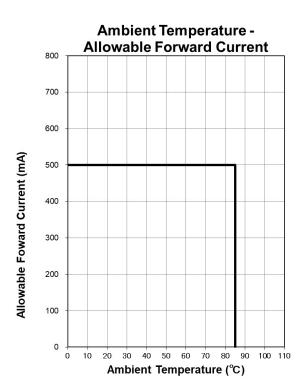
% Pulse Forward Current Condition : Duty 1% and Pulse Width=1ms.

%Soldering condition : Soldering condition must be completed with 10 seconds at below 260 $^\circ$ C

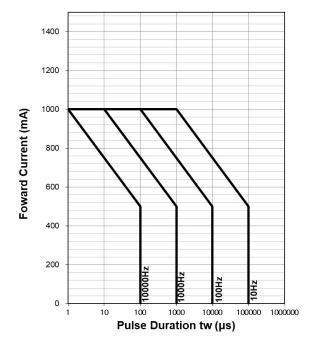

Optical and Electrical Characteristics (Tc=25 $^{\circ}$ C)

Parameter	Symbol	Min	Тур	Мах	Unit	Test Condition
Forward Voltage	VF		2.9	3.4	V	I⊧=500mA
	VFP		3.6		V	IFP=1000mA
Radiated Power(500-1000nm)	Ро		54		mW	I⊧=500mA
			90		mW	I _{FP} =1000mA
Radiated Power(600-1000nm)	Po		35		mW	I _F =500mA
			60		mW	I _{FP} =1000mA
Excitation wavelength	λ		550		nm	I _F =500mA
Viewing Half Angle	θ 1/2		52		deg	IF=100mA

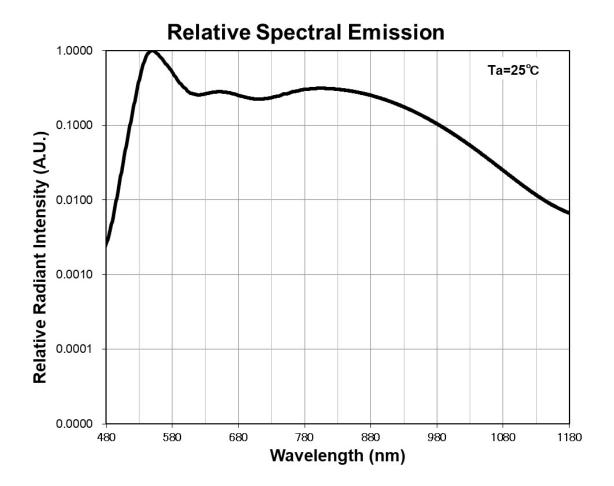

Ver.1.0


BBSMD5050-BB3-60-010

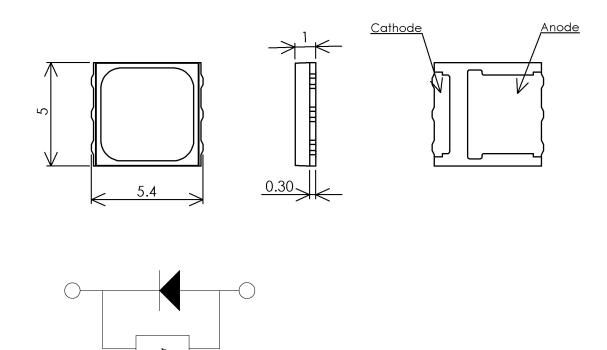
Typical Characteristic Curves



BBSMD5050-BB3-60-010



Pulse Duration - Forward Current



BBSMD5050-BB3-60-010

BBSMD5050-BB3-60-010

Outline and Internal Circuit

保護素子

BBSMD5050-BB3-60-010

RECOMMENDED METHODE OF STORAGE AND HANDLING

Storage Conditions

Before opening the moisture-proof Aluminum Bag

- Please keep at the condition of < 30°C and < 60% RH
- The maximum storage life is 12 months under these conditions.

After opening the moisture-proof Aluminum Bag

- Please store the aluminum bag and silica gel in a drying apparatus.
- The LED should go through the soldering process within 72 hours in a room with the condition of 5~30°C and < 50% RH.
- Unused remaining LEDs and silica gel should be returned to the original aluminum bag. And please hermetically seal that bag.
- It is recommended to store the re-sealed bag in a drying apparatus at the condition of < 30% RH.
- 72 hours of long floor life does not included the time period which LEDs are stored in the moisture-proof Aluminum Bag. Even though, it is highly recommended to solder the LEDs as soon as after opening the aluminum bag.

BBSMD5050-BB3-60-010

Disclaimer

Phoenix Electric Co., Ltd. reserves the right to change product specifications and data in this brochure without notice. Product performance, reliability, appearance or aspects might be changed according to its improvement.

Product data and parameters in this brochure are typical values according to reasonably updated measurements.

Product data and parameters may vary by its application and operating time.

Products listed in this brochure are designed for the application of general electronic equipment or apparatus. Products are not designed for the applications of airplanes, aerospace equipment, automobiles, traffic control systems, nuclear power control systems, medical devices, safety devices and any other applications in which malfunction or failure may result in personal injury or death.